Full discretization of wave equation

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Full Discretization of the Porous Medium/fast Diffusion Equation Based on Its Very Weak Formulation

Abstract. The very weak formulation of the porous medium/fast diffusion equation yields an evolution problem in a Gelfand triple with the pivot space H. This allows to employ methods of the theory of monotone operators in order to study fully discrete approximations combining a Galerkin method (including conforming finite element methods) with the backward Euler scheme. Convergence is shown eve...

متن کامل

Full Discretization of Semilinear Stochastic Wave Equations Driven by Multiplicative Noise

A fully discrete approximation of the semi-linear stochastic wave equation driven by multiplicative noise is presented. A standard linear finite element approximation is used in space and a stochastic trigonometric method for the temporal approximation. This explicit time integrator allows for mean-square error bounds independent of the space discretisation and thus do not suffer from a step si...

متن کامل

Uniform boundary stabilization of the finite difference space discretization of the 1-d wave equation

The energy of solutions of the wave equation with a suitable boundary dissipation decays exponentially to zero as time goes to infinity. We consider the finite-difference space semi-discretization scheme and we analyze whether the decay rate is independent of the mesh size. We focus on the one-dimensional case. First we show that the decay rate of the energy of the classical semi-discrete syste...

متن کامل

Linear Dynamics of Oscillating Lattices – A Spatial Discretization of the Wave Equation∗

This work examines solutions of a spatial discretization of the classical wave equation as a model for the linearized dynamics of an infinite system of particles indexed by and having equilibrium positions x ∈ hZn, with each particle linked to its 2n nearest neighbours by harmonic springs. We numerically observe the existence of a spherical monotone wavefront corresponding to the continuum ligh...

متن کامل

Absorbing Boundary Conditions for the Discretization Schemes of the One-Dimensional Wave Equation

When computing a partial differential equation, it is often necessary to introduce artificial boundaries. Here we explain a systematic method to obtain boundary conditions for the wave equation in one dimension, fitting to the discretization scheme and stable. Moreover, we give error estimates on the reflected part.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Boundary Value Problems

سال: 2015

ISSN: 1687-2770

DOI: 10.1186/s13661-015-0396-3